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In a recent paper, Prenter [3] showed that if H is a real, separable Hilbert
space then the family of all continuous polynomials from H to H is dense
in the space of continuous functions on a compact subspace of H. At the end
of her paper she conjectures the validity of a Weierstrass approximation
theorem for complex Hilbert spaces. We found an alternative version of such
a theorem to which we were led by symmetry considerations.

The proof of our theorem is in two parts. The first treats the finite dimen-
sional case. The second (which we omit) extends the result to the infinite
dimensional case by projecting onto a finite dimensional subspace and then
using some simple Hilbert space inequalities. This part follows [3 Sect. 5]
and is equally valid in the real or complex case.

We now proceed with the theorem in the finite dimensional case.

THEOREM. Let H be a complex separable Hilbert space. The family of
continuous polynomials on H restricted to a compact subset K of H is dense
in the set C(K) of continuous functions on H into H restricted to K where
C(K) carries the uniform norm topology.

Proof. As mentioned our space H is finite dimensional. Let ¢, ¢, ... @n
be a fixed orthonormal basis. If x € H, we have x = Y., z;p; . Define
% = Y, Zp; . For p and ¢, any two non-negative integers, define

xP9 = (X, X,..., X, X, X,..., X) € HP¥Y,
et R e et
p-times ¢-times

where H* is the cartesian product of H with itself k-times. For convenience,
we set x%° equal to the zero vector.

A k-linear operator L, is a function from H* into H which is linear in each
variable. (For k = 0, L, is a constant function from H into H).

* This work was partially supported by National Science Foundation Grant G.P.
19653A-1.
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For each n (n = 0, 1, 2,...) suppose we are given n + 1 n-linear operators
Lo L., L.
A sum of the form

N n
Z Z Lnk(xk.n-—k)
n=0 k=0

will be called an Nth degree polynomial operator. For a given n and
k(n=1,2,3,..,0 < k < n) we compute L, (x*"*) where x = Y, z;9; .

L F(xEn%y = L %X, X,..., X, X, Xy.00y X)

= L'nk (Z ZiPs s Z Z;P; s 2 Zz(Pt 3 Z 2,(]:,)
g=1

i=1 i=1

m

Z 23\Ziy " 23,20 Z5, " Baoy
1 jper=l

m m m
=X X Z
iy=1 12= =

||'[\’J§

* L‘nk ((Pil ’ (Pi2 300y (Pik ’ (le s (Pj2 3veey %‘,,,k)-
Note that the coefficient of

Lo ( iy s Pigseees Pigs Piy s Pigsees Pinp)s

thatis, z; z; *+* 2, %, Z;, *** Z;,_, contains exactly k z’s and (n — k) 2’s.
let K be a compact subset of H. We will use the following isometry

i H— I¥(m)

mw
where x = ¥, z;p; and (x) = (21, 25 5oer Zm)-
Let F be a continuous function from H into H. Since F(x) is in H we have

Fo) =3 fipr = 3 S0 @i = 3 fies s Za v Z) 1.

i=1 i=1 =1

It is clear that each f(1 < i < m) is a continuous function of m complex
variables on the set y(H) = I*(m).

Since K is compact, and 3} is continuous, ¥(K) is also compact. Let € > 0.
By the Weierstrass approximation theorem for m complex variables [2],
there are polynomials p; = pi(z, 25 ,..., Zn)(1 < i < m) defined on (H)
such that

Ifi —pill = sup [ fi((x)) — p((x))] < e/(m) /2.

Let P(x) = Z:nal Pip; = Z:il (%)) @; .
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Using the appropriate norms we have

2

m m
|F— Pjf = ‘ Zfz% - ZPi‘Pi
i1 =1

m

}; (fi —pd P

V=

I

|
|

= Z I(fi — po) @: I

(&

=Y plE<Y S = e

“m
So||F - P|| e
We have only to show that P can be written in the form

z i L‘"k(xk,n—k)

n=0 k=0

(=

for some N and some choice of the L,*’s, i.e., that P is really an Nth degree
polynomial operator.

Let d; equal the degree of p, and N > max,¢,c,, d; . This is the desired N.
Consider p;p; (1 < i < m). Since p; is a polynomial, p;p; will be a sum
consisting of each term of p; multiplied by ¢, . So we may interpret p,¢; as a
polynomial with vector coefficients. Thus, P = Y., p,@; is also a poly-
nomial, of degree <N, with vector coefficients. Consider an arbitrary
term in P,

Sat Ay L, SAeshizie L, SHs
‘UZ'IJIZZ'Z ZZ.TZJ.1 ZjZ st

where 1 <Al <i<r), 1 < p(1 <j<s), and where we now specify

that i} < iy << -+ <ip,J; <Jo <+ <J,.Setting u = A + A+ - + A,

and v = u, + p, + -+ + u,, it follows that the degree of the above term is

u + v < degree P << N and 9 is its vector coefficient. We will also consider

ZLO Sh-0 L,F(x®"—*) as a polynomial of degree <N with vector coefficients.
The only place where terms of degree u# -+ v occur is in

w+e

Z Lﬁ_H;(xk.u-H;—k).
k=0

In this sum, the only place where a term of degree u in the z,’s and of degree
v in the Z’s occurs is in LY, (x*%). A given term might occur more than
once in L%  (x*?),
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We now define the L,*’s on certain sets of points. Consider
Lnk(‘le s (Piz 3erey (sz 5 (le ’ ‘Pa’z 3eeey <Pj"_k)- (1)

If the following two conditions are not satisfied, define (1) to be the zero
vector:

) h << <
(ii) h<Jje < K Jnek
If the above two conditions are satisfied we define the L,*’s below. In

LY, (x*7), the term

AL A L. JArgiighe | Sis
Zpzyt e 22T e 2 2)

occurs exactly once, with a vector coefficient of

Lz+v((pi1 s @iy seers (Pil s Pigs Pigoeers Pigseees (pi, s @i, seees (Pir s (le s Piyo-ees (le >
Pig> Pigoers Pigoeers Pigs Piigaeees ‘P:i,)s (3)

where i;, occurs A, times (1 << k <C r) and j; occurs g, times (1 < I < s).

Now we define (3) = . That is, we set the vector coefficient of (2) in
L%, (x*°) equal to the vector coefficient of (2) in P. Now each term in P
occurs with the proper vector coefficient in Zn_o py -0 L, *(x*»¥), For all
those points not yet considered set the L,*’s i in Zn 0 Y ro L *(x* ") equal
to the zero vector. We then have P(x) = Zn_o 3o Lo¥(x¥m¥), since, if
we view each as a polynomial, like terms have the same vector coefficient.

We now extend each L, linearly in each variable to obtain k-linear
operators. This shows that P is of the desired form and so completes the
proof.

In the above we considered » -+ 1 n-linear operators L,°, L,%,..., L,"
(n =1,2,...) and using these formed the sums Z: 0 Y nro Lk (xFn=F),
Prenter only uses one #n-linear operator and looks at sums of the form
Zn_o o La(x*%). These sums have certain symmetry properties and
therefore cannot be used to approximate certain unsymmetrlc functions.

C0n51der for example z,2. This term will occur in ano oo ,,(x’“ n—k)
only in Zk_o Ly(x*2%) = Lz(x x) 4+ Ly(x, X) + Ly(X, X). In fact, z? will
occur only in Ly(x, x) = ZH Z _1 2:Z;Lo(; , ;). And then only in the form
zZ2:Ly(p, , @y). Similarly Zz;2 will occur only in ZLO Ly(x*2-%), In fact,
;% will only occur in' Ly(X, ¥) = Yiy Yy Z:2;Ly(g: », @;) and then only in
the form z,Z,Ly(¢, , ¢,). So z;? and Z,2 both have the same vector coefficient
Ly, , ¢;). This is the symmetry consideration. Other examples are of
course possible.
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