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In a recent paper, Prenter [3] showed that if H is a real, separable Hilbert
space then the family of all continuous polynomials from H to H is dense
in the space of continuous functions on a compact subspace of H. At the end
of her paper she conjectures the validity of a Weierstrass approximation
theorem for complex Hilbert spaces. We found an alternative version of such
a theorem to which we were led by symmetry considerations.

The proof of our theorem is in two parts. The first treats the finite dimen­
sional case. The second (which we omit) extends the result to the infinite
dimensional case by projecting onto a finite dimensional subspace and then
using some simple Hilbert space inequalities. This part follows [3 Sect. 5]
and is equally valid in the real or complex case.

We now proceed with the theorem in the finite dimensional case.

THEOREM. Let H be a complex separable Hilbert space. The family of
continuous polynomials on H restricted to a compact subset K of H is dense
in the set C(K) of continuous functions on H into H restricted to K where
C(K) carries the uniform norm topology.

Proof As mentioned our space H is finite dimensional. Let f[!l f[!2 ••• f[!m

be a fixed orthonormal basis. If x E H, we have x = L::l Zif[!i' Define
x = L::l Zif[!i • For p and q, any two non-negative integers, define

x v.q = (x, x, ... , x, x, x, ... , x) E Hv+q,

---------- ----------v-times q-times

where Hk is the cartesian product of H with itself k-times. For convenience,
we set xo.o equal to the zero vector.

A k-linear operator Lk is a function from Hk into H which is linear in each
variable. (For k = 0, Lo is a constant function from H into H).

* This work was partially supported by National Science Foundation Grant G.P.
19653A-1.
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For each n (n = 0, 1, 2,...) suppose we are given n + 1 n-linear operators
Lno, L n1,... , L nn.

A sum of the form
N n

L L Lnk(X'M-k)
n~O k=O

will be called an Nth degree polynomial operator. For a given nand
k (n = 1,2,3,... , °~ k ~ n) we compute Lnk(xk.n- k

) where x = 2::1 Zi'Pi'

(
m m m m)

= Lnk L Zi'Pi ,... , L Zi'Pi, L 2i'Pi ,... , L Zi'Pi
i=1 i=1 i=1 i=1

Note that the coefficient of

that is, Zi Zi ... Zi 2; 2; ." z; contains exactly k z's and (n - k) z's.
12k 1 2 n-k

Let K be a compact subset of H. We will use the following isometry

ifi: H ~[2(m)

where x = 2::1 Zi'Pi and ifi(x) = (ZI , Z2 ,..., zm)'
Let F be a continuous function from H into H. Since F(x) is in H we have

m m m
F(x) = Lh'Pi = Lh(ifi(x)) 'Pi = Lh(ZI , Z2 , ••• , Zm) 'Pi .

i=1 i=1 i=1

It is clear that each h(1 ~ j ~ m) is a continuous function of m complex
variables on the set ifi(H) = [2(m).

Since K is compact, and ifi is continuous, ifi(K) is also compact. Let € > O.
By the Weierstrass approximation theorem for m complex variables [2],
there are polynomials Pi = P;(ZI , Z2 ,... , zm)(l ~ j ~ m) defined on ifi(H)
such that

Ilh - Pi II = sup Ih(ifi(x)) - Pi(ifi(x))\ ~ €/(m)I/2.
xeK
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Using the appropriate norms we have

I! F - P 11
2 = II IhTi - I PiTi 11

2

2=1 t=l

I 1n 2 m

= II I (h - Pi) Ti II = I II(h - Pi) Ti 11 2

I i=l 'i=l

SO IIF- PII ~ E.

We have only to show that P can be written in the form

N n

I I Lnk(xk.n- k)
n~O k~O

for some N and some choice of the Lnk'S, i.e., that P is really an Nth degree
polynomial operator.

Let di equal the degree of Pi and N ?: max1<i<m di • This is the desired N.
Consider PiTi (l ~ i ~ m). Since Pi is a polynomial, PiTi will be a sum
consisting of each term ofPi multiplied by Ti . So we may interpret PiTi as a
polynomial with vector coefficients. Thus, P = :L:1 PiTi is also a poly­
nomial, of degree ~N, with vector coefficients. Consider an arbitrary
term in P,

where 1 ~ Ai(l ~ i ~ r), 1 ~ f1'll ~ j ~ s), and where we now specify
that i1 < i2 < ... < iT' jl < j2 < ... < j • . Setting u = Al + "\2 + ... + AT
and v = f1'1 + f-t2 + '" + f-t., it follows that the degree of the above term is
u + v ~ degree P ~ N and v is its vector coefficient. We will also consider
:L~=o :L~~o L nk(Xk.n - k) as a polynomial of degree ~Nwith vector coefficients.

The only place where terms of degree u + v occur is in

1..'+11

I L~+v(Xk."+V-k).

k~O

In this sum, the only place where a term of degree u in the z;'s and of degree
v in the z/s occurs is in L~+v(xu.V). A given term might occur more than
once in L~+vCxu.v).
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We now define the L nk'S on certain sets of points. Consider

21

(1)

If the following two conditions are not satisfied, define (1) to be the zero
vector:

(i) i1 :(; i2 :(; ••• :(; i k

(ii) j1:(; j2 :(; .,. :(; jn-k .

If the above two conditions are satisfied we define the Lnk'S below. In
L~+v(xu.V), the term

occurs exactly once, with a vector coefficient of

(2)

T j2' T j2 , ... , Tj2 , ••• , Tjs ' Tj. ,... , Tj), (3)

where ik occurs Ak times (1 :(; k :(; r) and j! occurs fL! times (1 :(; I :(; s).
Now we define (3) = v. That is, we set the vector coefficient of (2) in

L~+V<xu,V) equal to the vector coefficient of (2) in P. Now each term in P
occurs with the proper vector coefficient in L:~o L~=o Lnk(xk,n-k). For all
those points not yet considered set the Lnk'S in L~~O L~~o Lnk(xk.n- k) equal
to the zero vector. We then have P(x) = :L~~o :L~=o Lnk(xk.n- k), since, if
we view each as a polynomial, like terms have the same vector coefficient.

We now extend each Lnk linearly in each variable to obtain k-linear
operators. This shows that P is of the desired form and so completes the
proof.

In the above we considered n + 1 n-linear operators Lno, Ln\ ... , Lnn
(n = 1,2,...) and using these formed the sums L~~o L~~o Lnk(xk,n-k).
Prenter only uses one n-linear operator and looks at sums of the form
L~=o L~~o Ln(xk,n-k). These sums have certain symmetry properties and
therefore cannot be used to approximate certain unsymmetric functions.

Consider for example Z12. This term will occur in :L:=o :L~~o LnCxk,n-k)
only in L:~=o L 2(Xk.2- k) = L 2(x, x) + L2(x, x) + L 2(x, x). In fact, Z12 will
occur only in L2(x, x) = L::1 L:;:1 zizjL2(Ti, Tj). And then only in the form
Z1Z1LlT1, T1)' Similarly 212 will occur only in :L~=o L2(Xk.2- k). In fact,
212 will only occur in L2(x, x) = :L:1 :L::1 2;'ijL2(Ti, Tj) and then only in
the form Z1Z1L2(T1, T1)' So Z12 and 21

2 both have the same vector coefficient
L 2( T1 ,T1)' This is the symmetry consideration. Other examples are of
course possible.
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